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Abstract 

 

Electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) are 

used to extract crystallographic information from bulk samples, such as their crystal structure, 

orientation as well as presence of any dislocation and grain boundary defects. These techniques 

rely on the backscattered electron signal, which has a large distribution in electron energy. Here 

the influence of plasmon excitations on EBSD patterns and ECCI dislocation images is 

uncovered by multislice simulations including inelastic scattering. It is shown that the Kikuchi 

band contrast in an EBSD pattern for silicon is maximum at small energy loss (i.e. few plasmon 

scattering events following backscattering), consistent with previous energy filtered EBSD 

measurements. On the other hand, plasmon excitation has very little effect on the ECCI image 

of a dislocation. These results are explained by examining the role of the characteristic plasmon 

scattering angle on the intrinsic contrast mechanisms in EBSD and ECCI. 
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Introduction 

 

The channeling dependence of the electron backscatter yield in a scanning electron microscope 

(SEM) is exploited in techniques such as electron backscatter diffraction (EBSD) and electron 

channeling contrast imaging (ECCI). EBSD provides information on crystal phases, their 

orientation, grain boundaries and strain (Schwartz et al., 2009; Zaefferer, 2007), while ECCI 

is used for imaging crystal defects such as dislocations, stacking faults and sub-grain 

boundaries (Wilkinson & Hirsch, 1997; Zaefferer & Elhami, 2014). Simulations are often 

essential for interpreting subtle features in the data, such as ferroelectric domains (Burch et al. 

2017), chirality (Winkelmann & Nolze, 2015) and strain (Britton et al., 2010) in EBSD, as well 

as the contrast due to elastic strain fields in ECCI (Picard et al., 2014; Kriaa  et al., 2019). 

While there have been several attempts at modelling electron backscattering under channeling 

conditions (Dudarev et al., 1995; Spencer et al., 1972), current Bloch wave-based simulation 

methods (Picard et al., 2014; Winkelmann  et al., 2007; Winkelmann, 2008, 2009; Callahan et 

al., 2013; Pascal et al., 2018) rely on the observation that electron backscattering is largely 

incoherent, so that the backscatter signal from any given atom is proportional to the local 

electron beam intensity. Furthermore, in EBSD the reciprocity principle (Winkelmann, 2008) 



is invoked to simplify calculation of the backscattered wave propagation towards the detector, 

while in ECCI the column approximation (Hirsch et al., 1965) is assumed so that Bloch waves 

can be applied to a defect crystal in a tractable manner. 

 

An important feature of Bloch wave calculations is that inelastic scattering is modelled 

phenomenologically via a complex crystal potential (Hirsch et al., 1965). The imaginary term 

of the potential results in an electron flux that is continuously depleted as the electron beam 

propagates through the crystal. Since the exact distribution of the diffuse scattered intensity 

within the specimen is unknown it is difficult to accurately calculate its contribution to the 

backscattered signal. On the other hand, the physical optics-based multislice method (Cowley 

& Moodie, 1957; Kirkland, 2010), using either the (quasi-elastic) frozen phonon model (Loane  

et al., 1991) or the quantum excitation of phonons model (Forbes et al., 2010; Forbes & Allen, 

2016), can reproduce the diffuse scattered intensity distribution due to phonon scattering. This 

is essential for correctly modelling the intensity of Kikuchi bands and higher order Laue zone 

(HOLZ) rings (Kirkland, 2010). Chen and Van Dyck (1997) developed a more accurate 

multislice method that is applicable to the lower electron beam energies in an SEM. For reasons 

that will be discussed later (see Methods section) this produces better agreement with 

experimental EBSD patterns compared to the conventional, high energy multislice calculations 

(Liu et al., 2016). 

 

Apart from phonon losses, the incident electron can also scatter inelastically through collective 

plasmon excitations as well as single electron ionisation and interband transition events. Of 

these, plasmons typically have the largest scattering cross-section (Egerton, 1996). Energy 

filtered EBSD patterns have shown that for the standard experimental geometry of a 70o tilted 

sample the Kikuchi band contrast first increases with energy loss, reaching maximum contrast 

at few tens or hundreds of eV, before slowly decreasing at higher energy losses (Deal et al., 

2008; Vos & Winkelmann, 2019). The energy loss at peak contrast is well below that of single 

electron ionisation but greater than the recoil energy for backscattering (Winkelmann & Vos, 

2013), which suggests that the contrast mechanism may also involve plasmon and/or interband 

transitions. Therefore, accurate simulation of EBSD patterns requires at least plasmon 

scattering to be included alongside phonons. To our knowledge there are no reports of energy 

filtered ECCI images, although the introduction of Timepix direct electron detectors with 

energy thresholding (Vespucci et al., 2015) may make acquiring such images possible. 

 

Recently Monte Carlo methods have been used to include plasmon excitations in multislice 

simulations (Mendis, 2019, 2020; Barthel et al., 2020). The underlying principle is that 

plasmon excitations are highly delocalised (Muller & Silcox, 1995) and are therefore not 

significantly affected by electron beam channeling. Computer generated random numbers are 

used to estimate the plasmon scattering depth and angle. The depth is sampled from a Poisson 

distribution with mean value equal to the plasmon mean free path, while the angle is sampled 

from a Lorentzian distribution with half-width-at-half-maximum equal to the plasmon 

characteristic scattering angle (Egerton, 1996). Following plasmon excitation at the estimated 

depth, the estimated scattering angle is used to modify the subsequent electron trajectory 

through the sample (the change in electron wavelength due to plasmon energy loss is often 

sufficiently small to be neglected). This process is repeated for many plasmon ‘configurations’ 

and the results incoherently summed to give a statistically averaged result.  Plasmon multislice 



simulations have been shown to reproduce experimental energy filtered diffraction patterns 

(Mendis, 2019), as well as the angular distribution of scattering in position averaged convergent 

beam electron diffraction (PACBED) patterns (Barthel et al., 2020). These calculations were 

however for high energy electron diffraction in transmission geometry.  

 

In this paper we introduce plasmon excitations to the multislice method of Chen and Van Dyck 

(1997) with the purpose of uncovering their role in the contrast mechanisms in EBSD and 

ECCI. This is an improvement over current simulation methods (Picard et al., 2014; 

Winkelmann  et al., 2007; Winkelmann, 2008, 2009; Callahan et al., 2013; Pascal et al., 2018) 

which assume no inelastic scattering (apart from phonons) before or after the backscattering 

event in ECCI and EBSD respectively.  The energy of backscattered electrons can vary over 

all energies up to the primary energy of the incident electron beam. However, much of the 

channeling contrast signal is contained in those electrons with low energy loss (Deal et al., 

2008; Vos & Winkelmann, 2019), while the higher energy loss electrons contribute a 

background signal with no useful information. While our simulations cannot reproduce the full 

energy spectrum of the backscattered electrons, it does offer insight into the underlying 

scattering mechanisms that govern channeling contrast. It could also be useful for quantitative 

comparison with energy filtered data or for estimating the optimum experimental conditions 

for a given measurement. 

 

Methods 

 

Multislice Method 

 

The conventional multislice method, first proposed by Cowley and Moodie (1957), is based on 

an approximate form of the Schrödinger equation where the second derivative of the electron 

wavefunction Ψ with respect to depth z (i.e. the ∂2Ψ/∂z2 term) is assumed to be small (Kirkland, 

2010). This approximation is valid at high energies (≳100 keV) of the incident electron beam, 

since then scattering is weak and the wavefunction changes only slowly as a function of depth 

within the specimen. For sufficiently small slice thickness the error is O(3), where  is the 

incident electron wavelength (Chen & Van Dyck, 1997). For lower beam energies (e.g. SEM) 

the more accurate multislice method of Chen and Van Dyck (1997), based on the full 

Schrödinger equation, may be required. For example, at lower energies the electron refractive 

index will depend on higher order terms in the specimen potential (Lentzen, 2017); this limits 

the accuracy of the phase grating function as used in the conventional multislice model, where 

the phase shift due to scattering is taken to be proportional to the slice potential (Kirkland, 

2010). Similarly, the higher scattering angles at lower energies may mean that the parabolic 

approximation assumed for the Ewald sphere propagator function is no longer valid (Ming & 

Chen, 2013). A further benefit of the Chen and Van Dyck method is that it is also accurate for 

large beam tilts (Chen et al., 1997). This is particularly important for the EBSD simulations in 

this work, where the beam tilt is as large as 30o (see Methods section). For these reasons we 

use the more accurate multislice method of Chen and Van Dyck (1997) for the simulations, the 

implementation of which is summarised below. 

 



In multislice the specimen is divided into a series of thin slices of thickness  in the z-direction. 

The full Schrödinger equation for the jth-slice, which extends from z = (j-1) to z = j, can be 

expressed as (Chen & Van Dyck, 1997): 
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where Ψj(r) is the electron wavefunction for the jth-slice at the position vector r = (R, z), with 

R being a two-dimensional position vector in the xy-plane of the specimen. Ko is the 

wavenumber of the incident electron, ∇𝑥𝑦
2 =

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 is the Laplacian in the xy-plane and  = 

2em/(Koh
2) is the interaction constant (e, m are the charge and mass of the electron and h is 

Planck’s constant). Uj(R) is the slice potential U(r) projected along the z-direction. The 

𝑘̂𝑗(𝐑) operator is valid for scattering in the forward direction (Chen & Van Dyck, 1997). Note 

that Equation 1(a) includes the ∂2Ψj/∂z2 term which is required for higher accuracy.  

 

By use of suitable boundary conditions (i.e. Ψj and ∂Ψj/∂z are continuous at the boundary 

between neighbouring slices) the forward scattered wave can be calculated using a so-called 

‘transfer matrix’ method; see Chen & Van Dyck (1997) for details. For materials where 

backscattering is negligible (e.g. light atomic number elements such as silicon) it can be shown 

that the forward scattered wave Ψm for the mth-slice is given by (Chen & Van Dyck, 1997): 
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with Ψp being the incident wavefunction at the specimen entrance surface. The exponential 

operator in Equation 2 represents evolution of the wavefunction as it propagates between 

neighbouring slices. It has been shown that a second order expansion of the operator is 

sufficient for accurate simulation of EBSD patterns under SEM beam voltages (Liu et al., 

2016). Expanding Equation 1b to second order: 
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and so: 
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where ∇𝑥𝑦
4 =

𝜕4

𝜕𝑥4 +
𝜕4

𝜕𝑦4.  In Equation 3b a constant phase term exp(-2iKo) has been included 

to simplify the operator expansion (Chen & Van Dyck, 1997), but which otherwise has no 

effect on the calculated beam intensities. q(R) is a modified phase grating function, p1(R) is 

the standard propagator function in conventional multislice (Kirkland, 2010) and p2(R) is a 

higher order propagator function. The propagator functions represent a convolution in real 

space and are therefore more efficiently calculated in reciprocal space (Kirkland, 2010). The 

Fourier transforms (FT) are given by (see (Kirkland, 2010) for a derivation for p1(R); the result 

for p2(R) follows similar lines): 
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where k = (kx,ky) is a reciprocal space vector. Equation 3b follows from Equation 3a and makes 

use of the general expansion exp(A+B) = exp(A)exp(B), which is only true if the two operators 

A and B commute, i.e. AB = BA (Kirkland, 2010). The commutative property is however not 

valid for the phase grating function q(R) and propagator functions p1(R), p2(R) so that Equation 

3b is only exact to first order (Kirkland, 2010). The so-called ‘mixed’ operator o(R) represents 

propagation of the electron beam within the specimen potential (as opposed to free space). It 

does not have a simple Fourier transform and must therefore be evaluated in real space. For the 

simulations on silicon in this work it is found that o(R) does not have a significant effect on 

the results, although its effect may be more important for specimens of higher atomic number 

(Ming & Chen, 2013). If o(R) is neglected the multislice simulations can be performed using 

Fast Fourier Transforms, which is computationally more efficient than real space calculation 

of the exp[2𝜋𝑖(𝑘̂𝑗 − 𝐾o)𝜀] operator used previously (Cai & Chen, 2012; Liu et al., 2016; 

Spiegelberg & Rusz, 2015). Nevertheless, in this work o(R) was included for completeness; it 

was expanded up to second order and evaluated in real space. In order to reduce aliasing 

artefacts during convolution the bandwidth of q(R), p1(R) and p2(R) are limited to two-thirds 

the Nyquist limit, similar to conventional multislice simulations (Kirkland, 2010). 

 



For EBSD and ECCI simulations we are interested in the backscattered electron intensity, 

which is dominated by high angle thermal diffuse scattering (Winkelmann et al., 2007; 

Winkelmann, 2009). This is easily seen for scattering by a single atom, where the elastic and 

thermal diffuse scattered (TDS) intensities for scattering vector q are proportional to 

|f(q)|2exp(-2Bq2) and |f(q)|2[1-exp(-2Bq2)] respectively, with f(q) being the atom scattering 

factor and B the Debye-Waller factor. At sufficiently large q the TDS contribution becomes 

greater than the elastic scattering (Pennycook & Jesson, 1991). As an example, for silicon at 5 

kV (the simulation conditions in this paper) the cross-over point is at 12o, which is well below 

the minimum angle of 20o required for backscattering in a standard EBSD measurement with 

70o beam incidence angle. As further evidence for the dominance of TDS scattering in a crystal 

we have used the Chen and Van Dyck (1997) multislice method to simulate the purely elastic 

backscattered diffraction pattern for [001]-silicon. The simulated results are presented in the 

Appendix and appear very different to experimental EBSD patterns, thereby confirming that 

TDS is the dominant mechanism responsible for backscattering. 

 

In the incoherent limit (i.e. large collection solid angle) the TDS inelastic scattered intensity is 

proportional to (Lugg et al., 2014): 

 

∫ {∑|Ψ𝑛(𝐫)|2

𝑛

} 𝑉(𝐫)d𝐫 

… (5) 

 

where V(r) is the interaction potential and Ψn(r) is the electron wavefunction with the specimen 

in the nth-phonon configuration. Equation 5 is integrated over the entire analytical volume. For 

backscattering, the TDS interaction potential is well approximated by a delta function centred 

on each atom (Rossouw et al., 1994), so that the TDS backscattered signal from a given atom 

is proportional to the local electron beam intensity (i.e. the summation term within the curly 

brackets in Equation 5). The electron beam intensity can be calculated using Equation 2 

alongside a quantum excitation of phonons model (Forbes et al., 2010; Forbes & Allen, 2016) 

for the different phonon configurations. 

 

Plasmon Excitations 

 

In this section the Monte Carlo method for simulating plasmon excitations is summarised. The 

plasmon scattering depth (s), polar (θ) and azimuthal (ϕ) scattering angles are estimated using 

the following formulae (Mendis, 2019; Barthel et al., 2020): 
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where R1, R2, R3 are computer generated linear random variables within the range [0,1], p is 

the plasmon mean free path and θE, θc are the characteristic and critical plasmon scattering 

angles respectively (Egerton, 1996). θE can be calculated from Ep/(2Eo), where Ep is the 

plasmon energy (17 eV for silicon (Mendis, 2019)) and Eo is the primary beam energy. Barthel 

et al. (2020) obtained values of p = 1000 Å and θc = 15 mrad by fitting simulations to 

experimental PACBED patterns of [110]-Si at 300 kV. Extrapolating to 5 kV, the beam voltage 

used for the present simulations, we obtain p = 16.7 Å and θc = 132 mrad. These values are 

derived from the fact that p is approximately proportional to Eo and that the critical scattering 

vector magnitude q =sin(θc)/ is independent of Eo (Egerton, 1996). 

 

Following propagation of the electron beam to a depth s within the sample the scattering angles 

θ and ϕ due to plasmon excitation modify the subsequent electron trajectory. The wavefunction 

must therefore be multiplied by a phase ramp term, exp(2iktR), where kt is the change in 

transverse wavevector due to plasmon scattering (Barthel et al., 2020). This method has been 

shown to accurately reproduce the angular distribution of scattering in PACBED patterns 

(Barthel et al., 2020). A similar approach is therefore adopted here, i.e. at the slice m where 

plasmon scattering takes place the wavefunction Ψm (Equation 2) is multiplied by 

exp(2iktR). kt is rounded to the nearest pixel of the multislice supercell in reciprocal space, 

to comply with the periodic boundary conditions of the simulation and avoid aliasing artefacts 

(Barthel et al., 2020). The large θc value of 132 mrad at 5 kV can also pose problems with the 

available bandwidth for the multislice supercell, especially when multiple scattering is 

involved. To mitigate this an upper θ limit of 50θE (i.e. 85 mrad or nearly twice the {220} 

Bragg angle) is imposed. This does not lead to a significant error since the cross-section at a 

scattering angle of θ = 50θE is smaller by four orders of magnitude compared to forward 

scattering. Implementation of plasmon excitations is computationally more efficient in 

multislice compared to Bloch waves, since for the latter the Bloch wave coefficients and 

excitations must be re-calculated after each plasmon event, which is more time consuming. 

However, in all cases inclusion of plasmons increases the overall simulation time compared to 

standard calculations for elastic and phonon scattering only. 

 

EBSD and ECCI simulations 

 

EBSD and ECCI simulations are carried out on a [001]-silicon specimen using a 5 kV electron 

beam. 5 kV, rather than a higher beam voltage, was selected in order to achieve a reasonable 

computation time for the EBSD simulations. The shorter plasmon mean free path at 5 kV 

requires a smaller supercell thickness for examining the role of multiple plasmon scattering on 

EBSD contrast. Kirkland’s atom scattering factors (Kirkland, 2010) were used to calculate the 

projected potential of the supercell slices. The quantum excitation of phonons model (Forbes 

et al., 2010; Forbes & Allen, 2016), with 0.078 Å root mean square uncorrelated atom 

displacement (Kirkland, 2010), is used to model phonon scattering. Plasmon excitations are 

simulated using the method described previously. In all simulations only the TDS backscattered 

signal is calculated via Equation 5, and assuming a delta function interaction potential 

(Rossouw et al., 1994). The TDS backscattered signal is therefore proportional to the local 

electron beam intensity (i.e. |Ψ𝑚|2 in Equation 2) at the backscattering atom (Picard et al., 

2014; Winkelmann  et al., 2007; Winkelmann, 2008, 2009; Callahan et al., 2013; Pascal et al., 

2018). 



 

EBSD calculations are based on the principle of reciprocity (Winkelmann, 2008). As illustrated 

schematically in Figure 1a, backscattering from an atom ‘P’ can take place in many directions, 

but only those multiple scattered electrons that exit the sample in the direction of the EBSD 

camera will be detected. Each pixel in the (far-field) EBSD camera corresponds to 

backscattered electrons that share a common wavevector. By reciprocity, the backscattered 

signal from atom ‘P’ is therefore proportional to the local electron beam intensity at ‘P’ with 

the EBSD detector pixel as the source, which is in the far-field and therefore effectively 

corresponds to an incident plane wave with wavevector along the direction from pixel to 

sample. Strictly speaking the backscattered signal must also include a weighting term due to 

the energy-depth distribution of the incident electrons prior to backscattering (Pascal et al., 

2018), although this is ignored in the simplified reciprocity model which only focuses on the 

outgoing electron trajectory following backscattering. Each pixel in an EBSD pattern 

represents a unique incident wavevector that must be calculated separately, i.e. the incident 

plane wave is propagated into the sample and the local electron beam intensity at every atom 

is summed and assigned to the corresponding pixel in the EBSD detector (Equation 5). To 

avoid aliasing artefacts the EBSD pattern is sampled on the same 256 × 256 pixel reciprocal 

space grid as the (square) multislice supercell, which has a real space linear dimension of 27.15 

Å or 5ao, where ao is the lattice parameter of the silicon unit cell. The slice thickness was ao/4 

or 1.36 Å. Due to symmetry only 1/8th of the [001]-silicon EBSD pattern was simulated, and 

the rest filled in using mirror reflection. The supercell thickness was 100 Å. With a plasmon 

mean free path (p) of 16.7 Å this corresponds to, on average, ~6 plasmon scattering events. 

The energy loss for this number of plasmon excitations is sufficiently small to be ignored, the 

relative change in electron wavenumber being only ~1%. Therefore, only the plasmon 

scattering angle, and not the energy loss, was included in the simulations. Other ionisation 

events, such as the Si L- and K-edges, were ignored due to the much smaller cross-sections 

(Egerton, 1996; Vos & Winkelmann, 2019). Experimentally it is known that the useful 

information in an EBSD pattern originates from within the first few nanometres (or tens of nm) 

of the specimen surface (Zaefferer, 2007; Chen et al., 2011). Therefore, as will become clear 

from the results, a supercell thickness of 100 Å at 5 kV is sufficient to capture the essential 

physics of EBSD contrast. 

 

The ECCI intensity profile for a ½[110] Burgers vector screw dislocation is also simulated. 

The supercell for multislice simulation was generated in two steps. First a [001]-oriented 

silicon supercell was constructed with the screw dislocation lying in the plane of the specimen 

(Figure 1b). At any given point the atomic displacement, u(ω), is along the dislocation line 

direction and is expressed as: 

 

𝑢(𝜔) =
𝑏𝜔

2𝜋
 

…  (7) 

 

where b is the Burgers vector magnitude and ω is the angle measured with respect to the (11̅1) 

slip plane with dislocation core at the origin (Hull & Bacon, 2001). Next the supercell was 

tilted away from the [001] zone-axis by 12.9o (equivalent to five Bragg angles for the 220 

reflection), with the dislocation line as the tilt axis. In this geometry the (220) planes are end-



on and the strongest Bragg reflections are along the g = ±220 systematic row (symmetry 

orientation). The thickness of this new supercell was 100 Å with the dislocation at a depth of 

50 Å. This dislocation depth was chosen since it corresponds to, on average, only three plasmon 

excitations for a 5 kV beam; dislocations buried significantly deeper within the sample cannot 

be simulated using our method, since we do not take into account large energy losses, such as 

ionisation, which are more probable at greater depths.  A larger supercell dimension of 217.24 

Å (40ao) with 1024 pixel sampling was used so that aliasing artefacts caused by the long range 

elastic strain field of the dislocation are minimised. The ECCI signal was calculated by 

propagating the incident SEM probe into the sample and summing the local electron beam 

intensity at each atom position (Equation 5). The summed value is proportional to the 

backscattered ECCI signal for that probe position (assuming the detector solid angle is 

sufficiently large that channeling of the electrons after backscattering can be neglected). By 

‘rastering’ the SEM probe over the sample surface an ECCI image or profile can be constructed. 

An ECCI profile was calculated by scanning a 5 kV, 10 mrad semi-convergence angle probe 

across the dislocation in steps of 10 Å. All electron optic aberrations of the probe were set to 

zero. The supercell slice thickness was ao/4 or 1.36 Å. It is computationally expensive to 

simulate the full, long range strain field of the dislocation, which can extend to several tens of 

nanometres (Picard et al., 2014; Kriaa et al., 2019). Instead the focus is on simulating the 

dislocation core region, which in real materials is of potential interest due to dissociation into 

partial dislocations ((Hull & Bacon, 2001; Balk & Hemker, 2001; Mendis et al., 2006). The 

core region is also not accessible in conventional Bloch wave ECCI simulations (Picard et al., 

2014; Kriaa et al., 2019), due to the large strain fields and reliance on the column approximation 

(Hirsch et al., 1965). 

 

Results and Discussion 

 

EBSD patterns 

 

Figure 2a is the [001]-Si EBSD pattern simulated with only phonon scattering, i.e. plasmon 

scattering was not included. Five phonon configurations were averaged. Kikuchi bands as well 

as excess and defect Kikuchi lines (arrowed) are visible. In Bloch wave simulations, due to the 

phenomenological treatment of phonon scattering, the atom scattering factor must be modified 

to reproduce the anisotropy of Kikuchi line intensities (Winkelmann, 2008). Multislice 

simulations however have no such limitation, and therefore better reproduce the expected 

intensities. Figure 2b shows the simulated [001]-Si EBSD pattern with both phonon and 

plasmon scattering. A total of 50 plasmon/phonon configurations were simulated for each 

EBSD pixel. The Kikuchi lines are barely visible, and the contrast of the Kikuchi bands are 

also a lot weaker. The EBSD patterns for ‘zero’ energy loss as well as one, two, three, four and 

six plasmon events are shown in Figures 2c-2h respectively (here ‘zero’ energy loss includes 

the phonon losses during backscattering as well as propagation to the specimen surface). The 

‘energy filtered’ EBSD patterns were taken from the same simulation data set as Figure 2b. 

The Kikuchi band contrast increases between ‘zero’ energy loss (Figure 2c) and one plasmon 

event (Figure 2d), but decreases for higher order plasmon scattering, such that by six plasmon 

events (Figure 2h) even the Kikuchi bands are barely visible. This trend of maximum contrast 

at an energy loss greater than the recoil energy is consistent with experimental results on energy 

filtered EBSD (Deal et al., 2008; Vos & Winkelmann, 2019). It should be noted that in the 



simulation only the number of plasmon events as the backscattered electron leaves the 

specimen is recorded, while in experiment what is measured is the absolute energy, which also 

includes any energy loss prior to the backscattering event. This means that the maximum 

contrast measured by experiment will be shifted to higher energy losses compared to 

simulation. 

 

Figure 3 shows the number of TDS backscattering events contributing to the EBSD pattern of 

a given energy plotted as a function of specimen depth. For visual clarity only results for ‘zero’ 

loss, double plasmon and six plasmon events following backscattering are plotted. ‘Zero’ loss 

backscatter events occur close to the beam entrance surface, but as the energy loss increases 

the distribution broadens and shifts deeper into the solid. This is consistent with the trends 

expected of a Poisson distribution. Kikuchi band contrast is a result of phonon scattering, which 

is estimated to have a longer mean free path compared to elastic or plasmon scattering (Vos & 

Winkelmann, 2019). Since ‘zero’ loss backscatter events are confined to the near-surface 

region, there is much less phonon scattering that occurs as the electrons escape the solid. 

Consequently, for good Kikuchi band contrast the backscatter event must occur deeper within 

the material, a criterion that is satisfied at higher energy loss. However, there is a trade off since 

beyond a certain number of plasmon scattering events the contrast starts decreasing again due 

to the so-called plasmon ‘de-channeling’ effect (Mendis et al., 2019). For strong phonon 

scattering the electron beam must first channel along the atom columns. During plasmon 

excitation the incident electron is deflected on average by θE, which is relatively small for a 

single plasmon event (e.g. 1.7 mrad at 5kV). For multiple plasmon scattering however the 

cumulative effect of the beam deflection is such that the channeling, and hence Kikuchi band 

contrast, is diminished. 

 

The ratio (θB/θE), where θB is the Bragg angle, can be taken as a simple measure of the strength 

of plasmon de-channeling. The larger θE is compared to θB, the stronger the de-channeling 

during plasmon excitation; recall that a variation in incidence angle by ~θB is sufficient to 

change the channeling behaviour of the incident electrons (Hirsch et al., 1965). It is easy to 

show that (θB/θE) is proportional to √E, where E is the energy of the backscattered electron. 

Therefore, plasmon scattering should have a greater effect on Kikuchi band contrast at lower 

electron energies. In the simulations we only considered energies close to the 5 keV primary 

beam energy, although the energy spectrum of backscattered electrons covers the full range of 

values (Deal et al., 2008). This is due to energy loss of the incident electrons prior to the 

backscattering event, as well as the fact that backscatter electrons can escape from depths far 

larger than the 100 Å considered in the present simulations. Therefore, it is necessary to 

simulate all allowed electron energies and not just small energy losses (Callahan et al., 2013; 

Pascal et al., 2018). However, those electrons with energy significantly less than the primary 

beam energy are likely to have been backscattered from deeper within the specimen. While 

escaping the solid the electrons will therefore, on average, undergo multiple plasmon 

scattering. Since the ratio (θB/θE) is also smaller for these electrons they are likely to generate 

very little Kikuchi band contrast and therefore only contribute to the background signal. This 

is probably the reason why the relative intensity of the featureless background in experimental 

EBSD patterns increases with the primary beam energy, as demonstrated for a silicon [001] 

single crystal in Figure 4. Higher primary beam energies have a larger spread in backscattered 

energy values, and since Kikuchi band contrast is contained predominantly in those electrons 



with small energy losses, there will be more electrons in the ‘tail’ of the energy distribution 

that contribute to the background signal. Finally, we note that EBSD is related to electron 

channeling patterns (ECP) through the principle of reciprocity (Joy et al. 1982, Wells 1999), 

so that plasmon excitations should have a similar effect on the latter. 

 

ECCI profile of a screw dislocation  

 

Figure 5a shows the ECCI profile across the ½[110] screw dislocation obtained from a 

simulation that included phonon, but no plasmon, scattering. Ten phonon configurations were 

averaged.  The ECCI profile shows a left-right asymmetric intensity, consistent with previous 

experimental and simulated results (Wilkinson & Hirsch, 1997; Zaefferer & Elhami, 2014; 

Kriaa et al., 2019). The asymmetry is due to the dislocation strain field causing a reversal in 

lattice plane bending, and therefore electron beam channeling, either side of the dislocation.  

There is also a narrow (~30 Å width) peak in ECCI intensity at the dislocation core, which to 

our knowledge has not been reported previously, probably due to the resolution being better in 

the simulation compared to experiment and/or signal-to-noise issues arising from a large 

background in the experiment. Changing the sense of the dislocation displacement (Equation 

7) reversed the left-right asymmetry of the ECCI intensity profile, but the small peak at the 

dislocation core remained. 

 

Figure 5b is the ECCI profile after including plasmon losses; 100 phonon/plasmon 

configurations were averaged. Unlike EBSD patterns there is no significant change compared 

to the pseudo-elastic result (Figure 5a). The ECCI profiles for ‘zero’ loss and one to six 

plasmon losses are shown in Figures 5c-5i respectively (note that only plasmon events prior to 

backscattering are recorded). Interestingly all the ‘energy filtered’ ECCI profiles look very 

different to Figure 5b, indicating that there is not one dominant contributing energy loss. This 

can be understood by comparing plasmon de-channeling with the change in channeling 

conditions induced by the dislocation strain field. The change in deviation parameter sd for a 

reciprocal vector g due to a displacement vector field u is (Kriaa et al., 2019; Hirsch et al., 

1965): 

 

𝑠𝑑 = 𝐠 ⋅
𝜕𝐮

𝜕𝑧
 

…  (8) 

 

For our simulations the 220 reflection g is parallel to u. The magnitude of u is given by 

Equation 7 and z represents the spatial coordinate along the electron optic axis. Similarly, the 

deviation parameter vector sg for an incident wavevector Ko in a perfect crystal satisfies 

(Spence & Zuo, 1992): 

 

2𝐊o ⋅ 𝐬g = 𝐾o
2 − |𝐊o + 𝐠|2 

…  (9) 

 

It follows that for normal incidence the change in deviation parameter (sp) following plasmon 

scattering is approximately: 

 



𝑠𝑝 = −𝐠 ⋅
∆𝐤𝑡

𝐾o
 

…  (10) 

 

Equation 10 is evaluated assuming g is parallel to kt and |kt| ≈ KoθE (small angle 

approximation). The ratio |sd/sp| is then a simple measure for evaluating the role of plasmon 

scattering on ECCI contrast. If the ratio is large plasmon de-channeling is relatively minor and 

the ECCI contrast will mainly be due to the dislocation strain field. Figure 6 maps the logarithm 

of the |sd/sp| ratio as a function of position in the (110) plane (see Figure 1b), with the screw 

dislocation end-on and at the origin of the plot. Plasmon de-channeling is only significant in 

regions where |sp| > |sd|, i.e. when the logarithm of |sd/sp| has a negative value. From Figure 6 

this condition is satisfied in only small regions of the 100 Å thick simulation ‘volume’. 

Furthermore, close to the dislocation core region the |sd/sp| ratio is several orders of magnitude 

large. For dislocations close to the beam entrance surface the ECCI contrast will therefore be 

dominated by the intrinsic strain field.  Plasmon losses have a negligible effect, as confirmed 

by the simulation results in Figure 5. Backscattered electrons with energy significantly lower 

than the primary beam energy are likely to be generated deeper within the sample, where the 

dislocation strain field is small. Therefore, these electrons do not produce any dislocation 

contrast, and will only contribute a featureless background signal, similar to EBSD. Removal 

of this background, using for example a Timepix direct electron detector with energy 

thresholding [30], would improve the peak-to-background ratio of the ECCI signal and 

potentially enable analysis of the dislocation core structure (e.g. the small peak in Figures 5a 

and 5b). 

 

Conclusions 

 

The multislice method of Chen and Van Dyck has been extended to include plasmon losses 

and is used to simulate EBSD patterns and ECCI intensity profiles of a ½[110] screw 

dislocation in [001]-silicon. The EBSD simulations reproduce many of the trends observed 

experimentally. In particular, it is found that the Kikuchi band contrast is maximum for small 

energy loss (i.e. few plasmon scattering events) following backscattering. This can be 

understood by considering the competition between phonon scattering of the outgoing 

backscatter wave and plasmon de-channeling. For strong phonon scattering and Kikuchi band 

contrast the backscatter event must take place deeper within the sample. However, this must 

be balanced by the fact that the probability for plasmon excitation is also greater; the 

cumulative effect of many plasmon events with characteristic scattering angle θE is to de-

channel the backscattered wave off the atom columns, thereby decreasing phonon scattering. 

For the same reason it follows that those backscattered electrons with energy significantly 

lower than the primary beam energy will have very little Kikuchi band contrast and therefore 

contribute mainly to the background signal in an EBSD pattern. Simulated ECCI profiles for 

dislocations on the other hand show a very different behaviour. Here plasmon losses have a 

negligible effect on the ECCI profile, because the lattice plane bending by the dislocation strain 

field has a greater effect on electron beam channeling, and hence backscattering, compared to 

the plasmon scattering angle θE.  

 

Acknowledgements 



 

This research was partly supported under the Discovery Projects funding scheme of the 

Australian Research Council (Project No. FT190100619) and the North East Centre for Energy 

Materials funded by EPSRC, UK (Grant No. EP/R021503/1). 
 

Appendix 

 

In this section we compare simulated elastic backscattered diffraction patterns with 

experimental EBSD patterns. The elastic backscattered wave can be calculated using the Chen 

and Van Dyck (1997) multislice method. The solution has a simple form (see Equation 48 in 

Chen & Van Dyck, 1997) in the ‘single backscattering’ approximation, where multiple 

backscattering events are assumed to be negligible. Note that since the backscattering is purely 

elastic (i.e. TDS scattering is only in the forward direction) the backscattered waves from 

different specimen depths can interfere with one another (Chen & Van Dyck, 1997). Fourier 

transforming the net wavefunction at the specimen surface gives the backscattered diffraction 

pattern. 

 

Figure A1a shows the simulated [001]-silicon elastic backscattered diffraction pattern for a 5 

kV, aberration-free, 10 mrad semi-convergence angle probe at normal incidence. The specimen 

thickness was 100 Å and ten phonon configurations were averaged. Plasmons were not 

included in the simulations. The intensity of the Kikuchi bands are much weaker compared to 

the Bragg reflections (the intensity is plotted on a logarithmic scale). The diffraction pattern 

for the forward scattered wave at the specimen exit surface (Figure A1b) on the other hand 

displays more prominent Kikuchi bands along with Bragg reflections. Experimental EBSD 

patterns (e.g. Figure 4) are dominated by Kikuchi band contrast and only occasionally show 

weak RHEED (reflection high energy electron diffraction) spots (Vespucci et al., 2015). This 

is inconsistent with Figure A1a and indicates that high angle TDS is the dominant contribution 

to EBSD patterns even in crystalline specimens. 

 

References 

 

Balk, T.J. & Hemker, K.J. (2001). High resolution transmission electron microscopy of 

dislocation core dissociations in gold and iridium. Phil. Mag. A 81 1507-1531. 

 

Barthel, J., Cattaneo, M., Mendis, B.G., Findlay, S.D. & Allen, L.J. (2020). Angular 

dependence of fast-electron scattering from materials. Phys. Rev. B 101 184109 (9 pages). 

 

Britton, T.R., Maurice, C., Fortunier, R., Driver, J.H., Day, A.P., Meaden, G., Dingley, D.J., 

Mingard K. & Wilkinson, A.J. (2010). Factors affecting the accuracy of high resolution 

electron backscatter diffraction when using simulated patterns. Ultramicroscopy 110 1443-

1453. 

 

Burch, M.J., Fancher, C.M., Patala, S., De Graef, M. & Dickey, E.C. (2017). Mapping 180° 

polar domains using electron backscatter diffraction and dynamical scattering simulations. 

Ultramicroscopy 173 47-51. 

 



Cai, C. & Chen, J. (2012). An accurate multislice method for low-energy transmission electron 

microscopy. Micron 43 374-379. 

 

Callahan, P.G.  & De Graef, M. (2013). Dynamical Electron Backscatter Diffraction Patterns. 

Part I: Pattern Simulations. Microsc. Microanal. 19 1255-1265. 

 

Chen, J.H. & Van Dyck, D. (1997). Accurate multislice theory for elastic electron scattering in 

transmission electron microscopy. Ultramicroscopy 70 29-44. 

 

Chen, J.H., Van Dyck, D.  & Op de Beeck, M. (1997). Multislice method for large beam tilt 

with application to HOLZ effects in triclinic and monoclinic crystals. Acta Cryst. A 53 576-

589. 

 

Chen, D., Kuo, J-C. & Wu, W-T. (2011). Effect of microscopic parameters on EBSD spatial 

resolution. Ultramicroscopy 111 1488-1494. 

 

Cowley, J.M. & Moodie, A.F. (1957). The Scattering of Electrons by Atoms and Crystals. I. A 

New Theoretical Approach. Acta Cryst. 10 609-619. 

 

Deal, A., Hooghan, T. & Eades, A. (2008). Energy-filtered electron backscatter diffraction. 

Ultramicroscopy 108 116-125. 

 

Dudarev, S.L., Rez, P. & Whelan, M.J. (1995). Theory of electron backscattering from crystals. 

Phys. Rev. B 51 3397-3412. 

 

Egerton, R.F. (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum 

Press, New York. 

 

Forbes, B.D., Martin, A.V., Findlay, S.D., D’Alfonso, A.J. & Allen, L.J. (2010). Quantum 

mechanical model for phonon excitation in electron diffraction and imaging using a Born-

Oppenheimer approximation. Phys. Rev. B 82 104103 (8 pages). 

 

Forbes, B.D. & Allen, L.J. (2016). Modeling energy-loss spectra due to phonon excitation 

Phys. Rev. B 94 014110 (9 pages). 

 

Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W. & Whelan, M.J. (1965) Electron 

Microscopy of Thin Crystals, Butterworths. 

 

Hull, D. & Bacon, D.J. (2001) Introduction to Dislocations, Fourth Edition, Butterworth-

Heinemann, Great Britain. 

 

Joy, D.C., Newbury, D.E. & Davidson, D.L. (1982). Electron channeling patterns in the 

scanning electron microscope. J. Appl. Phys. 53 R81-122. 

 

Kirkland, E.J. (2010) Advanced Computing in Electron Microscopy, Second Edition, Springer, 

USA. 

 



Kriaa, H., Guitton, A. & Maloufi, N. (2019). Modeling Dislocation Contrasts Obtained by 

Accurate-Electron Channeling Contrast Imaging for Characterizing Deformation Mechanisms 

in Bulk Materials. Materials 12 1587 (9 pages). 

 

Lentzen, M. (2017). The refractive index in electron microscopy and the errors of its 

Approximations. Ultramicroscopy 176 139-145. 

 

Liu, Q.B., Cai, C.Y., Zhou, G.W. & Wang, Y.G. (2016). Comparison of EBSD patterns 

simulated by two multislice methods. J. Microscopy 264 71-78. 

 

Loane, R.F., Xu, P. & Silcox, J. (1991). Thermal vibrations in convergent-beam electron 

diffraction. Acta Cryst. A 47 267-278. 

 

Lugg, N.R., Neish, M.J., Findlay, S.D. & Allen, L.J. (2014). Practical Aspects of Removing 

the Effects of Elastic and Thermal Diffuse Scattering from Spectroscopic Data for Single 

Crystals. Microsc. Microanal. 20 1078-1089. 

 

Mendis, B.G., Mishin, Y., Hartley, C.S. & Hemker, K.J. (2006). Use of the Nye tensor in 

analyzing HREM images of bcc screw dislocations. Phil. Mag. 86 4607-4640. 

 

Mendis, B.G. (2019). An inelastic multislice simulation method incorporating plasmon energy 

losses. Ultramicroscopy 206 112816 (9 pages). 

 

Mendis, B.G. (2020). Theory underpinning multislice simulations with plasmon energy losses. 

Microscopy 69 173-175. 

 

Ming, W.Q. & Chen, J.H. (2013). Validities of three multislice algorithms for quantitative low-

energy transmission electron microscopy. Ultramicroscopy 134 135-143. 

 

Muller, D.A. & Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59 

195-213. 

 

Wells, O.C. (1999) Comparison of Different Models for the Generation of Electron 

Backscattering Patterns in the Scanning Electron Microscope. Scanning 21 368-371. 

 

Pascal, E., Singh, S., Callahan, P.G., Hourahine, B., Trager-Cowan, C. & De Graef, M. (2018). 

Energy-weighted dynamical scattering simulations of electron diffraction modalities in the 

scanning electron microscope. Ultramicroscopy 187 98-106. 

 

Pennycook, S.J. & Jesson, D.E. (1991). High-resolution Z-contrast imaging of crystals. 

Ultramicroscopy 37 14-38. 

 

Picard, Y.N., Liu, M., Lammatao, J., Kamaladasa, R. & De Graef, M. (2014). Theory of 

dynamical electron channeling contrast images of near-surface crystal defects. 

Ultramicroscopy 146 71-78. 

 

Rossouw, C.J., Miller, P.R., Josefsson, T.W. & Allen, L.J. (1994). Zone-axis back-scattered 

electron contrast for fast electrons. Phil. Mag. A 70 985-998. 



 

Schwartz, A.J., Kumar, M., Adams, B.L. & Field, D.P. (2009), Electron Backscatter 

Diffraction in Materials Science, Second Edition, Springer, USA. 

 

Spence, J.C.H. & Zuo, J.M. (1992) Electron Microdiffraction, Plenum Press, New York. 

 

Spencer, J.P., Humphreys, C.J. & Hirsch, P.B. (1972). A dynamical theory for the contrast of 

perfect and imperfect crystals in the scanning electron microscope using backscattered 

electrons. Phil. Mag. 26 193-213. 

 

Spiegelberg, J.  & Rusz, J. (2015). A multislice theory of electron scattering in crystals 

including backscattering and inelastic effects. Ultramicroscopy 159 11-18. 

 

Vespucci, S., Winkelmann, A., Naresh-Kumar, G., Mingard, K.P., Maneuski, D., Edwards, 

P.R., Day, A.P., O’Shea, V. & Trager-Cowan, C. (2015) Digital direct electron imaging of 

energy-filtered electron backscatter diffraction patterns. Phys. Rev. B 92 205301 (9 pages). 

 

Vos, M. & Winkelmann, A. (2019). Effects of multiple elastic and inelastic scattering on 

energy-resolved contrast in Kikuchi diffraction. New J. Phys. 21 123018 (19 pages). 

 

Wilkinson, A.J. & Hirsch, P.B. (1997). Electron diffraction based techniques in scanning 

electron microscopy of bulk materials. Micron 28 279-308. 

 

Winkelmann, A., Trager-Cowan, C., Sweeney, F., Day, A.P. & Parbrook, P. (2007). Many-

beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy 107 

414-421. 

 

Winkelmann, A. (2008). Dynamical effects of anisotropic inelastic scattering in electron 

backscatter diffraction. Ultramicroscopy 108 1546-1550. 

 

Winkelmann, A. (2009). Principles of depth-resolved Kikuchi pattern simulation for electron 

backscatter diffraction.  J. Microscopy 239 32-45. 

 

Winkelmann, A. & Vos, M. (2013). The role of localized recoil in the formation of Kikuchi 

patterns. Ultramicroscopy 125 66-71. 

 

Winkelmann, A. & Nolze, G. (2015). Chirality determination of quartz crystals using Electron 

Backscatter Diffraction. Ultramicroscopy 149 58-63. 

 

Zaefferer, S. (2007). On the formation mechanisms, spatial resolution and intensity of 

backscatter Kikuchi patterns. Ultramicroscopy 107 254-266. 

 

Zaefferer, S. & Elhami, N-N. (2014). Theory and application of electron channelling contrast 

imaging under controlled diffraction conditions.  Acta Mater. 75 20-50. 

 

 

 



 

 

 

 

Figures 

 

 
 

(a) (b) 

 

Figure 1: (a) Schematic illustrating backscattering in EBSD. The arcs represent Huygen 

wavelets due to scattering of the primary beam by atom ‘P’. Multiple scattering can take place 

within the sample, as indicated by a change in propagation direction of the Huygen wavelets. 

Those backscattered electrons that exit the sample with a common wavevector in the far-field 

are detected by a single pixel in the EBSD detector. (b) The geometry of the screw dislocation 

used for ECCI simulations. The screw dislocation has a ½[110] Burgers vector b and glides on 

the (11̅1) slip plane. Note that for a screw dislocation the line vector is along the same direction 

as the Burgers vector. 
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Figure 2: (a) 5 kV [001]-silicon EBSD pattern simulated with only phonon scattering and no 

plasmon losses. The red arrows denote excess and defect Kikuchi lines. (b) 5 kV [001]-silicon 

EBSD pattern including plasmon losses. The ‘energy filtered’ EBSD patterns for ‘zero’ loss, 



one, two, three, four and six plasmon losses are shown in figures (c) to (h) respectively. The 

numerical value at the top right hand corner is the percentage contribution of each diffraction 

pattern to the total intensity in Figure 2b. The dark corners in the diffraction patterns are due 

to bandwidth limiting in the multislice simulations. 

 

 

 
 

Figure 3: The number of TDS backscattering events of a given energy plotted as a function of 

specimen depth. The data is extracted from the 5 kV [001]-silicon EBSD simulations (Figure 

2) and includes results from 50 plasmon configurations. For clarity only the results for ‘zero’ 

loss, double and six plasmon energy losses are shown.  
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Figure 4: Experimental EBSD patterns from a [001]-silicon single crystal acquired at (a) 5 kV, 

(b) 15 kV and (c) 25 kV. Only the unprocessed EBSD patterns are displayed, i.e. the 

background intensity has not been subtracted. Note that due to the 70o tilt of the specimen the 

[001] zone-axis appears at the top of the EBSD pattern, as indicated in Figure 4a.  
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(i) 

 

Figure 5: (a) ECCI intensity profile across a ½[110] screw dislocation in silicon at a depth of 

50 Å from the free surface. The sample is tilted for strong g = ±220 systematic row excitation 

in the symmetry orientation. The screw dislocation is at the origin of the graph. The simulation 

includes only phonon scattering and no plasmon losses. (b) shows the same ECCI profile but 

with plasmon losses also included. Figures (a) and (b) are plotted on the same intensity scale 

to aid direct visual comparison. The ‘energy filtered’ ECCI profiles for ‘zero’, one, two, three, 

four, five and six plasmon losses are shown on the same intensity scale in figures (c) to (i) 

respectively. In all simulations the 5 kV incident beam had a 10 mrad probe semi-convergence 

angle and zero electron-optic aberrations.  



 
 

Figure 6: Natural logarithm of the |sd/sp| ratio plotted as a function of position. The viewing 

direction is [110] with the dislocation end-on and at the origin. The dashed line represents the 

trace of the (11̅1) slip plane (see Figure 1b). 
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Figure A1: (a) 5 kV elastic backscattered diffraction pattern from a 100 Å thick, [001]-silicon 

sample. The forward scattered diffraction pattern is shown in (b). The intensities are displayed 

on a logarithmic scale and the dark regions at the corners are due to bandwidth limiting in the 

multislice simulations.  

 

 


